| f(x)=C (constant) | f′(x)=0 |
| f(x)=xn | f′(x)=nxn−1 |
| f(x)=1−exp(Cx) | f′(x)=−Cexp(Cx) |
| f(x)=exp(x) | f′(x)=exp(x) |
| f(x)=exp(f(x)) | f′(x)=exp(f(x))⋅f′(x) |
| f(x)=log(x) | f′(x)=x1 |
| f(x)=log(C) | f′(x)=0 |
| f(x)=g(h(x)) | f′(x)=g′(h(x))⋅h′(x) |
| f(x)=u(x)⋅v(x) | f′(x)=u′(x)⋅v(x)+u(x)⋅v′(x) |
| f(x)=∣x∣ | f′(x)=sign(1) |